Shank Proteins Differentially Regulate Synaptic Transmission

نویسندگان

  • Rebecca Shi
  • Patrick Redman
  • Dipanwita Ghose
  • Yan Liu
  • Xiaobai Ren
  • Lei J Ding
  • Mingna Liu
  • Kendrick J Jones
  • Weifeng Xu
چکیده

Shank proteins, one of the principal scaffolds in the postsynaptic density (PSD) of the glutamatergic synapses, have been associated with autism spectrum disorders and neuropsychiatric diseases. However, it is not known whether different Shank family proteins have distinct functions in regulating synaptic transmission, and how they differ from other scaffold proteins in this aspect. Here, we investigate the role of Shanks in regulating glutamatergic synaptic transmission at rat hippocampal SC-CA1 synapses, using lentivirus-mediated knockdown and molecular replacement combined with dual whole-cell patch clamp in hippocampal slice culture. In line with previous findings regarding PSD-MAGUK scaffold manipulation, we found that loss of scaffold proteins via knockdown of Shank1 or Shank2, but not Shank3, led to a reduction of the number but not the unitary response of AMPAR-containing synapses. Only when both Shank1 and Shank2 were knocked down, were both the number and the unitary response of active synapses reduced. This reduction was accompanied by a decrease in NMDAR-mediated synaptic response, indicating more profound deficits in synaptic transmission. Molecular replacement with Shank2 and Shank3c rescued the synaptic transmission to the basal level, and the intact sterile α-motif (SAM) of Shank proteins is required for maintaining glutamatergic synaptic transmission. We also found that altered neural activity did not influence the effect of Shank1 or Shank2 knockdown on AMPAR synaptic transmission, in direct contrast to the activity dependence of the effect of PSD-95 knockdown, revealing differential interaction between activity-dependent signaling and scaffold protein families in regulating synaptic AMPAR function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a.

The postsynaptic density (PSD) proteins Shank and Homer cooperate to induce the maturation and enlargement of dendritic spines (Sala et al., 2001). Homer1a is an activity-inducible short-splice variant of Homer that lacks dimerization capacity. Here, we show that Homer1a reduces the density and size of dendritic spines in cultured hippocampal neurons in correlation with an inhibition of Shank t...

متن کامل

A Role for Synaptic Zinc in ProSAP/Shank PSD Scaffold Malformation in Autism Spectrum Disorders

The establishment and maintenance of synaptic contacts as well as synaptic plasticity are crucial factors for normal brain function. The functional properties of a synapse are largely dependent on the molecular setup of synaptic proteins. Multidomain proteins of the ProSAP/Shank family act as major organizing scaffolding elements of the postsynaptic density (PSD). Interestingly, ProSAP/Shank pr...

متن کامل

Association of Shank 1A Scaffolding Protein with Cone Photoreceptor Terminals in the Mammalian Retina

Photoreceptor terminals contain post-synaptic density (PSD) proteins e.g., PSD-95/PSD-93, but their role at photoreceptor synapses is not known. PSDs are generally restricted to post-synaptic boutons in central neurons and form scaffolding with multiple proteins that have structural and functional roles in neuronal signaling. The Shank family of proteins (Shank 1-3) functions as putative anchor...

متن کامل

Molecular Handoffs in Nitrergic Neurotransmission

Postsynaptic density (PSD) proteins in excitatory synapses are relatively immobile components, while there is a structured organization of mobile scaffolding proteins lying beneath the PSDs. For example, shank proteins are located further away from the membrane in the cytosolic faces of the PSDs, facing the actin cytoskeleton. The rationale of this organization may be related to important roles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017